Semi-supervised Discriminant Analysis Via CCCP

نویسندگان

  • Yu Zhang
  • Dit-Yan Yeung
چکیده

Linear discriminant analysis (LDA) is commonly used for dimensionality reduction. In real-world applications where labeled data are scarce, LDA does not work very well. However, unlabeled data are often available in large quantities. We propose a novel semi-supervised discriminant analysis algorithm called SSDACCCP . We utilize unlabeled data to maximize an optimality criterion of LDA and use the constrained concave-convex procedure to solve the optimization problem. The optimization procedure leads to estimation of the class labels for the unlabeled data. We propose a novel confidence measure for selecting those unlabeled data points with high confidence. The selected unlabeled data can then be used to augment the original labeled data set for performing LDA. We also propose a variant of SSDACCCP , called M-SSDACCCP , which adopts the manifold assumption to utilize the unlabeled data. Extensive experiments on many benchmark data sets demonstrate the effectiveness of our proposed methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-supervised orthogonal discriminant analysis via label propagation

Trace ratio is a natural criterion in discriminant analysis as it directly connects to the Euclidean distances between training data points. This criterion is re-analyzed in this paper and a fast algorithm is developed to find the global optimum for the orthogonal constrained trace ratio problem. Based on this problem, we propose a novel semi-supervised orthogonal discriminant analysis via labe...

متن کامل

Spectral Methods for Linear and Non-Linear Semi-Supervised Dimensionality Reduction

We present a general framework of spectral methods for semi-supervised dimensionality reduction. Applying an approach called manifold regularization, our framework naturally generalizes existent supervised frameworks. Furthermore, by our two semi-supervised versions of the representer theorem, our framework can be kernelized as well. Using our framework, we give three examples of semi-supervise...

متن کامل

On Computational Issues of Semi-Supervised Local Fisher Discriminant Analysis

Dimensionality reduction is one of the important preprocessing steps in practical pattern recognition. SEmi-supervised Local Fisher discriminant analysis (SELF)— which is a semi-supervised and local extension of Fisher discriminant analysis—was shown to work excellently in experiments. However, when data dimensionality is very high, a naive use of SELF is prohibitive due to high computational c...

متن کامل

Semi-Supervised Based Hyperspectral Imagery Classification

Hyperspectral imagery classification is a challenging problem. Wherein, the high number of spectral channels and the high cost of true sample labeling greatly reduce the classification precision. In this paper, we proposed a semi-supervised method, which combine linear discriminant analysis and manifold learning, to improve the precision of hyperspectral imagery classification. Experimental res...

متن کامل

Fast semi-supervised discriminant analysis for binary classification of large data-sets

High-dimensional data requires scalable algorithms. We propose and analyze three scalable and related algorithms for semi-supervised discriminant analysis (SDA). These methods are based on Krylov subspace methods which exploit the data sparsity and the shift-invariance of Krylov subspaces. In addition, the problem definition was improved by adding centralization to the semi-supervised setting. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008